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Abstract

There is a need for toxicity tests capable of recognizing indoor environments with compromised 

air quality, especially in the context of moisture damage. One of the key issues is sampling, which 

should both provide meaningful material for analyses and fulfill requirements imposed by 

practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing 

methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a 

toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged 

school buildings, we evaluated one passive and three active sampling methods: the Settled Dust 

Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for 

Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 

macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production 

of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. 

The repeatability of the toxicological analyses was very good for all tested sampler types. 

Variability within the schools was found to be high especially between different classrooms in the 

moisture-damaged school. Passively collected settled dust and PM collected actively with the 

NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the 

higher relative immunotoxicological activity of dust from the moisture-damaged school. The 

NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in 

toxicity testing. The applicability of such sampling strategy in grading moisture damage severity 

in buildings needs to be developed further in a larger cohort of buildings.
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Introduction

Due to the adverse health effects linked with exposure to indoor air particularly in moisture-

damaged buildings (WHO, 2009) and the high prevalence of moisture observations in 

building stock (Haverinen-Shaughnessy et al., 2012), it is crucial to be able to identify the 

buildings that are most likely to cause health issues to the occupants. Since the measurement 

of microbial markers has been insufficient for identifying moisture damaged buildings 

linked with ill health, other ways to assess indoor air quality have been explored, including 

toxicity assays measuring the biological response, e.g. cell cultures. These studies have 

suggested that the toxicity and inflammatory potential of airborne dust in vitro might reflect 

the biological activity of the exposure (Huttunen et al., 2008, 2010). However, assessment of 

the indoor air quality with the help of toxicity assays has been hindered by the lack of 

sampling methods specifically tailored for the needs of toxicological assays; most of the 

available methods have been developed for microbiological or chemical analysis of the 

samples. As a result, they may include the source for artifacts such as remnants of filter 

material or extraction buffer, which need to be considered when applying these methods for 

toxicological characterization.

Airborne particulate matter (PM) can be collected actively by using devices such as 

impactors, cyclones, impingers or filters (Frankel et al., 2012; Jantunen et al., 2002; Wang et 

al., 2015). There are also passive collection methods that represent essentially different ways 

of collecting airborne dust settling onto surfaces. These approaches include collecting dust 

in cardboard boxes (Hyvärinen et al., 2006a), in dustfall collectors (Würtz et al., 2005), onto 

electrostatic cloths (Noss et al., 2008) or in Petri dishes (Adams et al., 2015). Passively 

settled dust is also part of the house dust reservoir that can be sampled by vacuuming 

directly from carpets, furniture or floors into filters, tubes or nylon sampling socks (Arbes et 

al., 2005; Casas et al., 2013; Leppänen et al., 2014; Pitkäranta et al., 2011).

When considering a suitable sampling method for toxicological analysis of the indoor PM, 

the main aim should be to capture the inhalable particles with the least possible interference 

caused by the sampling itself and without modifying the biological activity of the collected 

material. Actively collecting size-fractioned PM from the air is considered to be the closest 

representation of inhalation exposure, albeit missing volatile compounds contributing to the 

total exposure. However, actively collecting airborne dust is labor-intensive and the sampling 

parameters such as choice of filter material, sampling time and impaction velocity may 

affect the amount and quality of the sample.

Sampling dust reservoirs such as floors or beds is a poor candidate for toxicological testing 

due to a significant contribution from particles that are not considered to be relevant for 

inhalation exposure. These include coarse particles carried indoors by shoes or clothing, or 

particles originating from occupants themselves that do not get airborne. Dust samples 

vacuumed from furniture or wiped from surfaces are likely to contain contaminants from 

surface materials, introducing artifacts into toxicological assays. Lack of standardization of 

the sampling surface makes comparisons between indoor environments problematic. 

Moreover, the “age” of dust in reservoirs is typically undefined, making it difficult to link 

the sample with exposure during a specific time period. Instead, collecting airborne settled 
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dust onto a standard surface with little chemical reactivity for a defined period of time 

overcomes these issues. This method is arguably a relatively easy and affordable way to 

collect sufficient amounts of sample material (Adams et al., 2015; Frankel et al., 2012; 

Täubel et al., 2011).

In this study, our goal was to find a practical sampling method for performing toxicological 

analysis of the indoor PM, which would ultimately allow differentiating moisture-damaged 

from non-damaged buildings. Altogether four sampling methods were tested in three 

sampling campaigns conducted in moisture-damaged and non-damaged school buildings. 

The applicability of the sampling methods was evaluated by assessing the 

immunotoxicological potential of the collected sample material and the reproducibility of 

the toxicity assay.

Materials and methods

Sampling

Two primary schools located in the close geographical vicinity in Central Finland were 

selected: one with reported water damages (index school) and another school with no 

reported moisture problems (reference school). The school buildings were similar in age, 

size and construction, but the number of pupils differed between the index and reference 

schools (176 and 343 pupils, respectively). In addition to moisture damage or mold 

problems reported by the school representatives, the buildings were inspected by a trained 

civil engineer to confirm the status of the school. Both schools were visited during active use 

of the school and within the same season. During three sampling campaigns, three active 

sampling methods were tested and compared to one passive sampling method. The duration 

of sampling was adjusted according to pilot testing within a maximum time of 2 weeks. Four 

samplers were selected for testing as potential candidates according to literature and 

previous experience. The tested active collectors were the Button Aerosol Sampler (Button 

Sampler), the Harvard Impactor, the National Institute for Occupational Safety and Health 

Bioaerosol Cyclone Sampler (NIOSH Sampler). The passive method was the Settled Dust 

Box (SDB) sampler.

Sampling campaign 1—A Button Aerosol Sampler (SKC Inc., Eighty Four, PA) 

collected inhalable particles on polytetrafluoroethylene (PTFE) filters (pore size 0.45 μm). 

Samples were collected from three classrooms for 35 h (4 l/min) during 5 workdays from 

both schools.

Sampling campaign 2—A Harvard Impactor (Air Diagnostics and Engineering, INC., 

Naples, ME) collected PM2,5 particles on PTFE filters (pore size 3 μm). Samples were 

collected from three classrooms for 74 h (10 l/min) during 10 workdays from both schools.

Sampling campaign 3—The NIOSH Bioaerosol Cyclone Sampler (CDC/NIOSH/HELD, 

Morgantown, WV) divides the particles into three fractions according to their size: Stage 1 

(>1.9 μm, 1.5 ml tube), Stage 2 (1–1.9 μm, 1.5 ml tube) and Stage 3 (<1 μm, PTFE filter, 

pore size 0.45 μm). Samples were collected from two classrooms for 66 h (3.5 l/min) during 

9 workdays from both schools.
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Sampling campaign 2–3—The SDBs collect settling dust passively in cardboard boxes. 

Four boxes (450 × 200 × 60 mm) were placed into classrooms at a height of ~1.5 m on a 

shelf or mounted on the wall. The samples were collected from six classrooms in both 

schools. The classrooms were classified as damaged or non-damaged according to visible 

signs of moisture and/or mold odor. After 2 weeks, the settled dust was vacuumed onto 

fluoropore membrane PTFE filters (pore size 0.45 μm).

All samples were stored frozen (−20 °C) until toxicological analysis.

Cell culture

RAW 264.7 mouse macrophages (ATCC, Rockville, MD) were cultured in a humidified 

atmosphere with 5% CO2 at 37 °C, using Roswell Park Memorial Institute 1640 (Gibco, 

Paisley, UK) cell culture medium supplemented with 10% heat-inactivated fetal bovine 

serum, 2 mM L-glutamine and 100 U/ml penicillin-streptomycin (all from Sigma, St. Louis, 

MO). The cells were seeded in 24 well plates at a density of 0.2 × 106 cells/well 1 day 

before the exposure.

Sample preparation

The filter samples were extracted into complete cell culture medium (2 ml per sample). The 

filter was gently washed with medium, sonicated for 15 min and shaken for additional 15 

min. The medium was warmed up to 37 °C and the filter was removed. For the NIOSH 

samples collected directly into sampling tubes, the cell culture medium (1 ml per sample) 

was added to the tube, mixed thoroughly and warmed to 37 °C. A dilution series (1:2–1:32) 

of the sample was prepared with complete cell culture medium.

Mass and number of particles

Filters—All filters were weighed before and after the sampling by an XP105DR analyzing 

scale (Metler Toledo, Switzerland, readability: 0.01 mg; 0.1 mg). The samples were 

stabilized at a room temperature at least for 48 h and a static charge neutralizer (Ion-Care 

Stat-Pen, Sweden) was used before weighing. The range of the temperature in the weighing 

room was 20–23 °C (max ± 2 °C during 24 h) and the humidity range was 30–40% (max 

± 5% during 24 h). The amount of dust collected with SDB is expressed as mg per sampler 

area (m2), whereas the amount of dust collected with Button Sampler, Harvard Impactor and 

NIOSH Sampler (Stage 3) is expressed as μg per volume (m3) of sampled air.

Tubes—The total number of particles collected with the NIOSH Sampler (Stages 1 and 2) 

and suspended in the medium were determined with a PAMAS SVSS particle counter 

(PAMAS GmbH, Rutesheim, Germany) using a SLS-25/25 sensor (size range 0.5–20 μm, 

maximum particle concentration 13 000 particles/ml) and PMA analyzing software. Fifty 

microliters aliquots from Stage 1 and 2 samples collected with the NIOSH Sampler were 

diluted 1:5000 in ultraclean water and the analysis of particle numbers were run in triplicate. 

The particle concentration in blank medium samples was subtracted from the results. The 

number of particles is expressed per volume (m3) of sampled air.
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Exposure of mouse macrophages

A duplicate set of cells were exposed to a dilution series of each dust suspension for 24 h. 

After the incubation, the exposure was terminated by resuspending the cells by scraping. A 

sample for assessing the metabolic activity of the cells was taken from the cell suspension 

and the rest was centrifuged (5 min at 6082 × g, 4 °C) to separate the cells from the medium. 

The inflammatory mediator nitric oxide (NO) was analyzed from the fresh medium and the 

remaining medium was stored frozen (−80 °C) until analysis of the proinflammatory 

cytokine tumor necrosis factor α (TNFα).

Toxicological analyses

Cell metabolic activity—The CMA describing the viability of the cells was measured 

with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which is 

based on the ability of the mitochondria in the cells to change MTT’s color from yellow to 

purple. Procedures described earlier by Hansen et al. (1989) were modified by shortening 

the incubation with sodium dodecyl sulfate buffer to 4 h at 37 °C. The absorbance at 570 nm 

was analyzed with a multilabel plate reader (Victor3, PerkinElmer, Finland) and compared to 

control samples.

Nitric oxide production—The inflammatory mediator NO produced by cells was 

analyzed with an assay based on Griess reaction (Green et al., 1982), where NO oxidized to 

nitrate is reduced to nitrite and reacts with arylamine, creating an aniline-colored azo 

chromophore. Following the addition of Griess reagent (1% sulfanilamide and 0.1% 

naphthylethylenediamine dihydrochloride in 2% phosphoric acid), the absorbance at 540 nm 

was measured with a multilabel plate reader (Victor3) and compared with a standard curve 

for sodium nitrite.

Cytokine production—The concentration of the proinflammatory cytokine TNFα was 

determined with enzyme-linked immunosorbent assay according to the manufacturer’s 

instructions (R&D Systems, Minneapolis, MN). The absorbance at 450 nm was measured 

with a multilabel plate reader (Victor3) and compared with a standard curve.

Statistical analysis

The normality of the data was tested with a Shapiro–Wilk test. The correlation between 

duplicate analyses was tested with a Pearson product-moment correlation test. The statistical 

significance of the difference between blank and exposed samples was tested with a non-

parametric Wilcoxon Matched-pairs signed rank test, and the difference between repeated 

campaigns with a Mann–Whitney U-test (SigmaPlot™ version 12.3., Systat Software Inc., 

San Jose, CA).

Results

Repeatability of the toxicological analyses

A strong and highly significant correlation between the duplicate analyses was seen in all 

measured endpoints and sampler types (Table 1). The coefficient of variation (CV) of the 

duplicate analyses was typically less than 10% (average CV for all sampling methods 8.5%), 
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indicating good repeatability of the analyses. The repeatability of replicate samples collected 

from different classrooms within the same schools was clearly lower, average CV for 

different methods ranging from 16% to 50% (Button Sampler and SDB, respectively). The 

variability was typically higher in the index school regardless of the sampler type (Table 2).

The amount of dust in the schools

The mass of collected PM tended to be higher in the reference school than in the index 

school for Button Sampler, Harvard Impactor and SDB. The total particle count in 

suspension of the NIOSH samples (Stages 1 and 2) was higher in the samples from the 

reference school than in the index school for Stage 2 (1–1.9 μm particles), and lower in 

Stage 1 (>1.9 μm particles) (Table 3). The filter samples from Stage 3 (<1 μm particles) were 

weighed, but the mass was too small to produce reliable estimates (reference school 3 ± 2 

μg/m3, index school 2 ± 0.2 μg/m3, N = 2).

Comparison of immunotoxicity of samples collected with different methods

Passive method (settled dust box)—Overall, the exposure of mouse macrophages to 

settled dust caused a dose-dependent and statistically significant decrease of metabolic 

activity of the cells and an increase in the production of the inflammatory mediators NO 

compared to blank samples (Table 4). The results of analyses of settled dust from the same 

classrooms from two subsequent sampling campaigns did not correlate strongly with each 

other (Supplemental material, Table S1).

Active collection (Button Sampler, Harvard Impactor and NIOSH Sampler)—
The PM collected with active methods caused a decrease in metabolic activity and increase 

in production of inflammatory mediators in mouse macrophages compared to blank samples. 

The strongest response was seen for NIOSH Sampler Stage 1 (>1.9 μm particles), whereas 

the samples collected with NIOSH Sampler Stage 2 (1–1.9 μm particles) induced only minor 

effects on the exposed cells. Responses to blank (filter) samples from both Button Sampler 

and Harvard Impactor were slightly higher compared to blank (tube) samples from NIOSH 

sampler (Figure 1). The amount of sample in NIOSH Sampler (Stage 3) was insufficient for 

reliable toxicological analysis.

Comparison of immunotoxicity of samples from index versus reference building

We observed a trend for the higher immunotoxicological activity of the samples from index 

schools for some of the methods while acknowledging that sample numbers in these 

assessments were too low to produce reliable statistical estimates. In samples collected with 

the SDB method, we observed higher NO production induced by samples from the index 

school (Table 4). For the NIOSH Sampler, the trend toward higher immunotoxicological 

activity was seen both for Stage 1 (>1.9 μm) and Stage 2 (1–1.9 μm) particles from index 

schools, causing a slightly lower metabolic activity and higher production of inflammatory 

mediators NO and TNF α compared to the reference school (Figure 2).

Considering that the amount of dust was significantly different in the studied schools, we 

also adjusted the toxicity results for sample mass (for SDB, Button sampler and Harvard 

Impactor) or total particle count (for NIOSH sampler) to establish the relative 
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immunotoxicological activity of the collected material. The relative immunotoxicological 

activity of the dust from index schools tended to be higher than the dust from reference 

schools with all methods (Supplement material, Figures S1–S4). The greatest relative 

difference between the two schools was seen in samples collected with the NIOSH Sampler 

Stage 2 (1–1.9 μm particles) (Figure 3).

Discussion

Indoor exposures are notoriously complex, in particular, in the context of moisture damage 

and indoor dampness problems (Nevalainen et al., 2015). Targeting individual components 

of this exposure cocktail – such as microbes, toxins, volatile organic compounds, or PM 

itself – might underestimate the potential cellular and health impact of the combined 

exposures. Toxicological testing of indoor PM holds, therefore, promises to be useful in 

indoor assessments and in particular also in differentiating moisture-damaged from non-

damaged buildings. A sampling method suitable for toxicological testing should collect a 

sufficient amount of airborne dust within reasonably short sampling period with easy-to-use 

equipment. Importantly, when assessing the health relevance of the exposure, the collected 

sample should represent the inhalable exposure agents present in moisture-damaged 

environments. In this study, we evaluated three active and one passive sampling approaches 

for their suitability in toxicological studies of the indoor PM. Our findings indicate that size 

fractionated sampling as performed here with the NIOSH Cyclone Aerosol Sampler could 

be a suitable sampling approach for toxicological testing of indoor PM, even though issues 

of yielding sufficient sample amounts and the potential to differentiate moisture damaged 

from non-damaged indoor environments are still to be resolved.

Biologically active material released due to the microbial growth in buildings could 

contribute to any of the size fractions within inhalable particles as spores, hyphae and 

bacteria can be fragmented and their metabolites carried along in small particles (Żukiewicz-

Sobczak et al., 2013). The difference in the immunotoxicological properties of the samples 

collected with the Button Sampler and the Harvad Impactor presumably reflects the 

difference in the mass and size of collected particles (<100 μm and PM2.5, respectively). The 

measured responses to both of these sample types were relatively low and a slight increase in 

the baseline samples was seen, most likely due to the effect of filter material itself. Within 

the active methods, the PM collected with the NIOSH Sampler (Stage 1,>1.9 μm) induced 

the highest responses in the exposed cells. The immunotoxicological activity of the sample 

material collected in Stage 2 (1–1.9 μm) of the sampler was clearly lower, but the 

comparison of the school buildings suggested that the difference between the moisture-

damaged and reference buildings might be more pronounced in this size fraction. Smaller 

particles are interesting also for their ability to stay airborne longer and penetrate deeper into 

the respiratory system, making it more likely to be exposed to the active components carried 

by small fragments. Compared to filter-based active collection methods, the advantage of the 

cyclone-based NIOSH Sampler was the possibility to increase the sampling time without 

fear of clogging the filter membrane, and the collection of sample material directly into the 

sampling tube, which avoids the possible interference caused by the filter material.
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We noted that the amount of dust collected with different sampling methods differed 

between the schools, being higher in the non-damaged school compared to moisture-

damaged school in almost all cases. This complicates the comparison between samples from 

different schools because a high amount of dust is toxic to the cells regardless of the 

moisture damage status of the sampled building. In our study, the buildings were sampled 

within the same season, all sampled rooms were in active use and the number of pupils per 

classroom was similar in both schools. However, different aspects, such as ventilation 

conditions, exact sampling location or activity level of the pupils during school hours could 

affect the settling and accumulation of particles.

One challenge in establishing a method that could identify and even grade the severity of 

moisture damage in buildings is variability between sampling locations within the buildings. 

This implies that toxicological testing cannot replace the need for a thorough technical 

investigation of the building because the information about signs of moisture damage and 

dampness is required to decide on the appropriate sampling locations. Rather should the aim 

of toxicological testing of indoor PM be to support building investigations and facilitate 

decisions on prioritization and urgency of renovation actions. In our study, variation in 

toxicological response between different classrooms was high particularly in the moisture-

damaged school, indicating that potential health impacts of moisture damage in a building 

may follow hot spots of the moisture problems or their manifestation. Variability within the 

toxicological analyses was small, suggesting good repeatability of the assessment method 

itself.

In terms of toxicity testing, the main issues, particularly with the active sampling methods, 

are low amounts of collected particles as well as the possible interference from the filter 

material itself. According to our results, the amount of the collected sample was high 

enough to induce a significant and dose-dependent increase in immunotoxicity measures in 

all tested sampling approaches although the responses were clearly lower for samples 

collected with the Button Sampler and the Harvard Impactor. For the NIOSH Sampler, the 

response was undetectable for the very small particle fraction (Stage 3,<1 μm particles), low 

for the mid-size fraction (Stage 2, 1–1.9 μm particles), and very high for the largest particles 

(Stage 1,>1.9 particles), presumably due to the higher mass of the larger size fraction. The 

differences seen between classrooms within the studied school buildings emphasize the 

importance of a robust sampling strategy including several sampling locations.

The amount of airborne settled dust collected with the passive SDB method over a sample 

accumulation time of 2 weeks was sufficient for the toxicity testing. However, the combined 

results of consecutive sampling campaigns did not differ clearly between the schools with 

different moisture damage status, indicating that the amount and properties of the dust varied 

between samplings. Interestingly, categorizing the results according to the damage status of 

the classroom showed a difference in the toxicological properties of the dust within the 

building, suggesting that the moisture damage in one part of the building may change the 

toxicological characteristics of the dust rather locally. Out of the tested methods, the SDB 

has the advantage of being an inexpensive and easy-to-implement method of collecting dust 

from indoor environments, proven to harvest many of the components typical for moisture-

damaged environments and representing airborne dust better than floor dust (Hyvärinen et 
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al., 2006b). This sampling method has also been used earlier for studying toxicological 

characteristics of dust from moisture-damaged environments (Huttunen et al., 2016).

Conclusion

In conclusion, we identify several important issues when considering the suitability of a 

sampling approach to fulfill the needs of toxicity testing of the indoor PM. Those relate to 

the challenge of collecting sufficient sample amounts for the determinations, as well as to 

the obvious importance of a prudential sampling strategy given the variation in the 

biological response to indoor PM from different locations in a building. In addition, the ease 

of use as well as cost and time efforts of the sampling campaigns are relevant factors when it 

comes to actual field application by practitioners. Out of the tested sampling methods, size 

fractionating NIOSH Bioaerosol Cyclone Sampler was considered to be a promising 

approach. The possibility to further increase sample amounts and the potential of this 

approach to ultimately differentiate moisture damaged from non-damaged indoor 

environments are questions that will have to be answered by subsequent studies including a 

larger cohort of buildings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Average (±SEM). (A) Cell metabolic activity (CMA), (B) NO production and (C) TNFα 
production of mouse RAW264.7 macrophages after 24 h exposure to increasing doses 

(dilutions 1:16–1:1) of dust collected with the Button Sampler (N = 6), Harvard Impactor (N 
= 6) and NIOSH Sampler (N = 4) from two school buildings. The results are compared to 

blank samples (extract from blank filters/tubes, N = 2). Star (*) indicates a statistically 

significant difference compared to respective blank samples (Wilcoxon matched-pairs signed 

rank test, p<0.05).
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Figure 2. 
NIOSH Sampler, Stage 1 (>1.9 μm particles) and Stage 2 (1–1.9 μm particles), sample 

collection for 66 h: Average (±SEM). (A) Cell metabolic activity (CMA), (B) NO 

production and (C) TNFα production of mouse RAW264.7 macrophages after 24 h exposure 

to blank samples (extract from blank tubes, N = 2) or increasing doses (dilutions 1:16–1:2) 

of dust from index school and reference school (N = 2, for TNFα in reference school N = 1).
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Figure 3. 
NIOSH Sampler, Stage 2 (1–1.9 μm particles), sample collection for 66 h: Average. (A) Cell 

metabolic activity (CMA), (B) NO production and (C) TNFα production of mouse 

RAW264.7 macrophages after 24 h exposure related to total number of particles in the 

samples from index school and reference school (N = 2, for TNFα in reference school N = 

1).

Tirkkonen et al. Page 13

Inhal Toxicol. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tirkkonen et al. Page 14

Table 1

Pearson correlation coefficients of duplicate analyses of samples collected with four different methods. All 

correlations are statistically significant (p<0.001).

Sampling method

Cell metabolic activity NO

R Na R Na

Settled Dust Box 0.93 134 0.88 111

Button Sampler 0.91 21 0.92 21

Harvard Impactor 0.94 22 0.97 22

NIOSH Sampler, Stage 1 0.98 18 0.98 22

NIOSH Sampler, Stage 2 0.91 20 0.98 24

a
Number of duplicate pairs.
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Table 3

Average mass or particle number (± SEM) in samples collected with four different methods during three 

sampling campaigns from one moisture damaged and one reference school building.

Sampling method Campaign Reference school (Na) Index school (Na) Unit

Button Sampler 1 70 ± 25 (3) 19 ± 2.1 (3) μg/m3

Harvard Impactor 2 4.0 ± 0.7 (3) 3.5 ± 0.7 (3) μg/m3

Settled Dust Box 2 18 ± 7.0 (6) 16 ± 6.0 (6) mg/m2

Settled Dust Box 3 18 ± 7.3 (5) 6.5 ± 1.1 (6) mg/m2

NIOSH Sampler, Stage 1 3 160 ± 63 (2) 225 ± 147 (2) 103/m3

NIOSH Sampler, Stage 2 3 270 ± 119 (2) 121 ± 72 (2) 103/m3

a
Number of sampled classrooms.
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Table 4

Average (±SEM) cell metabolic activity and production of inflammatory mediators NO and TNFα of mouse 

RAW264.7 macrophages after exposure to blank samples or four doses of settled dust. Settled dust was 

collected using SDBs during two sampling campaigns from in total of 12 classrooms of one index school and 

12 classrooms of one reference school.

Dose Reference school (N = 12) Index school (N = 12) Blank (N = 3)

Cell metabolic activity (%) 1:16 69 ± 2.4 69 ± 6.1 94 ± 4.0

1:8 52 ± 3.1* 56 ± 6.9* 93 ± 10

1:4 35 ± 3.2* 40 ± 5.6* 98 ± 1.4

1:2 25 ± 2.1* 28 ± 3.9* 90 ± 3.2

NO (μM) 1:16 8.0 ± 1.0* 7 ± 1.8 0.9 ± 0.5

1:8 12 ± 1.3* 10 ± 2.3 1.1 ± 0.2

1:4 13 ± 1.4* 12 ± 1.8* 1.2 ± 0.2

1:2 8.0 ± 0.8*§ 12 ± 1.5*§ 1.2 ± 0.2

TNFα (ng/ml) 1:16 6.1 ± 1.4 5.2 ± 1.8 0.1 ± 0.05

1:8 9.6 ± 2.2 10.2 ± 3.5 0.1 ± 0.06

1:4 21.5 ± 5.0 15.6 ± 4.5 0.2 ± 0.07

1:2 39.7 ± 10.1 19.9 ± 4.6 0.3 ± 0.18

*
Statistically significant difference compared to blank sample (p<0.05).

§
Statistically significant difference between index and reference schools (p<0.05).
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